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1 Introduction and Overview  
 
This document is the final report for EROS-Based Confined Capability Client project 
(CCCP), a project in the DARPA Fault Tolerant Networks (FTN) program. The project 
was funded through the Air Force Research Laboratory (AFRL) Advanced Technology 
for Information Assurance and Survivability (ATIAS) program. This project was 
proposed under ATIAS Focus Research Topic (FRT) #5, which specifically addressed 
defensibility against hostile content in capability-based systems.  
 

1.1 Statement of the Problem  
 
Reading web content is frought with peril. There are problems at several levels: (1) 
current commodity operating systems are not secure enough to safely connect to the web, 
(2) all current browser rendering systems contain exploitable bugs, even in the absence of 
hostile scripting, and (3) web content contains scripting code, which may be hostile. 
These problems are not limited to web content; they arise for all of the currently available 
mechanisms of network-based content dissemination. Adobe’s “Portable Document 
Format,” for example, is similarly vulnerable, as is Microsoft Word, Macromedia’s Flash 
Player, and other scriptable systems.  
 
The objective of CCCP is to construct a web browser prototype in which hostile content 
cannot obtain control of the viewing machine. As a specific, concrete test of control, the 
solicitation required that the browser should display the URL of the web page being 
viewed, and that it should be impossible for the hostile content to alter this display.  
 
The creation of a web browser prototype was chosen as a proxy for a much larger 
problem. An indirect goal of the solicitation was to evaluate the complexity of porting 
general-purpose applications to capability-based operating systems.  
 

1.2 Proposed Solution  
 
Our proposal is that solution to these problems should be structural. Since we cannot 
humanly eliminate 100% of the flaws in the content dissemination system, we must 
contrive to execute them in an environment that imposes control from the outside. The 
difficulty is that some of the needed controls cannot easily be established at the operating 
system level — they require knowledge of application-specific behavior.  
 
Our proposed solution is to implement a browser prototype on top of the EROS operating 
system [13], using confinement [10] and capabilities as the fundamental structuring tools 
for our implementation. By confining the hostile code within a controllable boundary, and 
surrounding it with a “cocoon” of small, simple components that restrict the application’s 
interaction with the outside world, it should be possible in many cases to render the 
hostile code harmless.  
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EROS is a research operating system built entirely around capability-based protection. 
The method of creating new processes in the EROS system guarantees that nearly all 
processes are confined.  At the time of the solicitation, EROS was a minimal research 
system lacking a network stack, a windowing system, or interactive applications. 
Therefore, the work plan divided into four main tasks:  
 

1. Implement a prototype defensible network stack.  
 

2. Implement a prototype secure window system.  
 

3. Construct an early browser-like exemplar to satisfy the concrete requirements of 
the solicitation.  

 
4. Port an existing full-featured browser, thereby evaluating the cost and complexity 

of porting and containing generalized applications.  
 
The first two tasks are non-trivial. While many network stacks exist, none provide any 
degree of defense in depth. All include flaws by which one application can compromise 
the network communications of a second. Current window systems provide essentially no 
controls over application interactions. In a browser designed to manage hostile content, a 
critical issue is to ensure that tight control is maintained over where hostile content may 
appear on the display. To achieve this, a new window system was needed.  
 
To simplify the problem, we chose in several respects to generalize the requirements of 
the solicitation. For example, we generalized “must not be able to tamper with the 
displayed URL” to “must not be able to draw anything outside of its designated rendering 
area.” We also chose to extend the notion of a web page with hostile content to include 
the network connection over which the content is delivered. That is, we consider the 
possibility that a hostile web server may attempt to compromise the browser by 
compromising the underlying network stack and operating system.  
 

1.3 Contributions of this Project  
 
The project produced four specific results:  
 

• Design, implementation, and evaluation of a network stack that exploits 
capability-based protection to provide high-performance while substantially 
reducing the number of vulnerable lines of code in the overall network subsystem.  

 
• Design and implementation of a trusted window system that imposes confined 

display subsessions on applications. This window system is significantly more 
flexible than previous trusted window systems (notably Trusted X [5]), several 
orders of magnitude smaller than conventional window systems, and potentially 
offers higher performance than current window system software.  
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• A browser prototype that demonstrates confinement of content. This prototype is 
limited in that it does not fully implement browser-style rendering. It also fetches 
content using TFTP rather that HTTP. However, neither of these simplifying 
differences changes the confinement outcome: the browser is confined in spite of 
the fact that both the browser implementation and the content it displays are 
presumed hostile.  

 
• An evaluation of the cost and complexity of porting general-purpose software and 

ensuring that it runs in contained form. While we were not successful in porting a 
production browser within the timeframe of the contract, we now know exactly 
what needs to be done in order to perform such ports quickly, and we understand 
what sorts of application changes are required to isolate such applications.  

 
An indirect contribution of this project comes from the extension and evaluation of the 
existing EROS system structure. In particular, our work on porting large bodies of 
existing software has prompted a small number of key architectural changes that are 
being adopted in the EROS successor and will make such ports cost effective in future 
work. Our success in the network and window system subtasks is a strong indicator that 
the key elements of the EROS architecture are extremely effective at providing high-
performance security.  
 

1.4 Report Organization  
 
There are six sections to this report. Section 2 covers technology background. Section 3 
discusses our technical approach. Section 4 provides a summary of our results and their 
significance. Section 5 discusses why the combination of confinement and capabilities 
was uniquely powerful in this project. Section 6 covers conclusions and 
recommendations for future work.  
 

1.5 Summary Conclusion  
 
It is possible to build high-performance, defensible systems using confinement and 
capabilities. While CCCP did not succeed in porting existing commodity software to the 
new platform, the problems encountered are straightforwardly fixable. The CCCP result 
demonstrates that complex subsystems can be restructured using capability-based 
protection and confinement to provide defense in depth that is difficult for either hostile 
content or well-intentioned misconfiguration to compromise.  
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2 Technology Background  
 
This section provides definitions, background, and prior context for the CCCP effort.  
 

2.1 Fundamentals of Hostile Program Control  
 
A capability is a protected data structure consisting of an object reference and a set of 
permissions. Conceptually, it is similar to a car key:  
 

• If you have the key (capability), you are in control of the car (object). If you 
don’t, you can’t make the car (object) do anything at all. Unlike a car, the objects 
that capabilities named cannot be “hot wired.” No capability, no access.  

 
• Like a car key, a capability cannot be obtained unless you already have one. You 

can copy a capability, but you cannot forge one.  
 

• In fancier cars, you may have several types of keys: the driver key, the valet key, 
the glove compartment key, and so forth. Each key permits different actions on 
the car. In a similar way, you can have multiple capabilities to the same object, 
each permitting different operations on that object.  

 
• As with car keys, the essence of capability security is to avoid giving the 

capabilities to the wrong party. In the case of capabilities, we want to avoid giving 
them to programs that may misuse them.  

 
In a capability-based operating system (or programming language), the only way to 
perform any action is to invoke some capability that you have. A consequence is that the 
set of actions that a program might perform are entirely defined by the capabilities that it 
holds. Control the capabilities and you control the program.  
 
EROS is a capability-based operating system. It was used as the foundation for the CCCP 
effort.   
 
Confinement is a compartmenting mechanism for programs. A program is confined if it 
can only send information to other programs using authorized channels. In a capability 
system, this can be restated as: an application is confined if the only writable capabilities 
that it holds are authorized (capabilities to read-only objects do not violate confinement). 
EROS provides a formally verified confinement mechanism known as the constructor. 
The constructor is the standard mechanism for creating new processes in the EROS 
system. In consequence, every process in the EROS system is initially confined, and its 
controlling process must explicitly permit access to other processes and components. This 
is in contrast to UNIX, where every process initially has very broad access rights, and the 
controlling process must somehow restrict these rights.  
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Concept: Principle of Least Privilege  
 

If you want to build a secure system, every component should start with no 
privileges and you should then grant only those privileges that the component 
requires. Trying to take away privilege after the fact empirically doesn’t work. 
This is analogous to the “need to know” principle.  

 
If you want to restrict what a program can do, two things are necessary:  
 

1. You need to know exactly what it can do. In a capability system, this is 
accomplished by controlling what capabilities the program is given.  

 
2. You need to know that that is all it can do. This is accomplished by ensuring that 

the program is confined.  
 

Concept: Control = Confinement + Least Privilege  
 

Confinement plus control over what capabilities are granted constitutes complete 
and total control over the actions of a program even if the program is actively 
hostile.  

 
The “actively hostile” part deserves emphasis. If you completely control the interactions 
that a program can have with the surrounding system, and you can determine that all of 
these actions are non-threatening, then it does not matter which of these interactions 
actually occur. Controlling the operational environment of the program renders it 
harmless.  
 

2.1.1 Practical Limits on Effective Control  
 
In practice, there are two limits on the control that can be achieved using confinement and 
least privilege:  
 

1.The control provided does not address covert channels. Covert channel controls were 
not required by the FRT, but it is important to recognize that the control provided by 
this technique is not total control. The control provided is sufficient to prevent 
penetration, but it is not sufficient to prevent leakage of information that may be 
disclosed to a hostile program.  

 
2.There is always some point where the potentially hostile component must 

communicate with the surrounding system. For example, a user may click on a web 
link, and the hostile web page must now communicate with the web browser to 
request that a new page should be loaded. This is both good news and bad news:  

• The bad news is that any communication between an untrusted program and a 
program that has the power to do something damaging presents an opportunity 
for attack.  
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• The good news is that these are the only points of vulnerability to attack, there 

aren’t very many of them, the developer knows where they are (and can 
therefore apply paranoid design in a small number of pivotal places), and each 
interaction point requires a differently specialized attack.  

 
The combination of confinement and least privilege restores the advantages of position,  
terrain, and control over terms of engagement to the defender. A weak lead software 
developer can still lose this battle, but it is conceivable that a merely competent software 
developer might successfully defend themselves.  
 

2.1.2 Defense in Depth  
 
The description above describes the restoration of control that is achieved when the 
system design provides a defensible bottleneck and confinement and least privilege are 
applied at this bottleneck.  
 
The obvious extension of this idea is to design a system in which there are a series of 
defensible bottlenecks in the system design, each of which must be independently 
attacked in order to penetrate. This is comparable to designing a mechanical system in 
which three or four related parts must fail in sequence to cause an overall system failure. 
 
I should emphasize that the “bottlenecks” discussed here are not performance 
bottlenecks. A better term might be “checkpoint.” The flow of information across these 
checkpoints can be quite fast. The key issue is that these are points that information and 
requests must cross, where it is natural and efficient to check the requests and information 
that is flowing.  
 

2.2 EROS  
 
EROS is a high-performance research operating system built entirely around capability-
based protection as a foundational mechanism. It provides a basic utility for confinement 
that has been formally verified [14]. EROS runs on commodity Pentium-family 
machines, requiring no unusual hardware to provide security. If run on a system 
providing hardware-supported tamper-resistant bootstrap, EROS is potentially capable of 
resisting compromise by operating system replacement and is further potentially capable 
of establishing secure distributed systems sharing a common trusted computing base. 
DARPA elected not to fund the optional work to demonstrate this.  
 
At the start of CCCP, EROS consisted of a kernel and a very small number of low level 
operating system utilities. Functionallly, the EROS system was comparable to a Linux 
kernel with no networking, no graphics system, no file system, and no applications.1 

                                                 
1 Actually, we had a “hello world” program, and it was quite secure, but it wasn’t terribly useful for CCCP.   
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There was extremely limited language support (a C compiler, but essentially no C 
library).  
 
In addition, EROS had no simple mechanisms to let developers hook together programs 
that we might write. In Linux, the closest mechanism is the pipe, which lets one program 
send a byte stream to a second. In EROS, the system is designed to communicate by 
messages. Message-based systems are more expressive, more powerful, and more flexible 
than stream-based designs, but they require a greater degree of effort to specify what the 
interface (the messages) between two programs should be. While we knew approximately 
what the interface definition tool should look like, we did not have a concrete design the 
interface description language or a tool that managed the code generation for these 
interfaces.  
 
 

2.3 Alternatives to EROS  
 
In spite of the relative incompleteness of EROS at the start of CCCP, there are no OS-
based alternatives. Only one other system (KeyKOS [7]) has ever been constructed with 
comparable architectural support for confinement and least privilege. KeyKOS (still) 
does not run on the most important processor architectures, and no license for the 
KeyKOS technology was available at the time of project start. In any case, the state of the 
KeyKOS system was roughly equal to that of EROS,2 with the additional complication 
that much of KeyKOS is implemented in PL/1, a language with limited compiler support.  
 
Mandatory access controls, such as the multilevel security required by TCSEC and/or the 
more general controls implemented by SELINUX are not sufficient to address this 
problem. In the case of TCSEC, the issue is that this isn’t a mandatory access control 
problem. The problem here is discretionary — allowing an interactive application to 
defend itself from hostile content in spite of faulty implementation. In the case of 
SELINUX, the problem is that the control requirements cannot be specified at the 
operating system level. For example, isolation requires a one-way network 
communication channel. The hostile page should not be able to communicate outwards 
over the TCP/IP connection that it is using to read the page. At the TCP level of 
abstraction, however, various control messages must flow to the server machine to 
implement the TCP protocol. The issue is that the connection must be read/write at the 
lower level of abstraction and read-only at the higher level of abstraction. Expressing and 
implementing this requires application-specific knowledge, which is beyond the scope of 
what SELINUX and similar mechanisms can handle.  
 
One viable alternative approach to the one we proposed is a language-based solution. The 
architecture of this approach is fundamentally comparable to the one we adopted, but is 
implemented at a different level of the system. This approach was taken by Combex, Inc., 
who was the other contract awardee under this FRT.   
                                                 
2 EROS initially started as a reverse-engineering effort intended to rebuild the KeyKOS system using modern tools. It later became a 
research effort in its own right. 
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If the high-level objective is to build a single application solving one particular problem 
(e.g. a web browser), the language approach is clearly preferred. By building on a 
carefully stripped-down operating system and running only one application (the browser), 
a tremendous amount of control can be obtained at low cost. The limitations of this 
approach are:  
 

• It doesn’t scale. In the absence of operating system controls like the ones we 
apply in EROS, the second and subsequent applications cannot be protected from 
the first. 

 
• It doesn’t generalize. Language-based solutions are wonderful when all of the 

code you need can be found in a safe language (e.g. Java). The overwhelming 
majority of code out there isn’t written in safe languages, and we need to be able 
to re-use it.  

 
This statement of limitations is endorsed by the Combex team. Combex was able to build 
a very successful capability-based confined browser, but they acknowledge that the 
underlying Linux system is a vulnerability in their approach. Modestly larger applications 
than the one required for this FRT would force them to introduce code written in C using 
the Java Native Interface mechanism, and that this code would be vulnerable and not 
controlled by their approach.  
 
The EROS OS-based approach was intended to work up from the bottom to provide a 
platform on which generalized, scalable solutions would be possible.  
 

3 Technical Approach  
 
This section describes the approach and design used in CCCP.  
 

 
 

Figure 1: Originally proposed task workflow for CCCP. 
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The original proposal called for a three-pronged development path with late integration 
(Figure 1). The general idea was to implement a network stack and a window system 
while pursuing the application portability problem, relying on the assumption that most 
Linux applications — including the browser we intended to port — use a low-level 
graphics toolkit, and that the graphics toolkit already had a highly portable 
implementation that would mate up with our window system when it was ready.  
 
Accordingly, we split the effort into three teams. The networking team set out to port the 
lwIP network stack to EROS. The windowing team set out to architect and implement a 
trusted window system, and the application team set to work porting the GTK toolkit, the 
Pango rendering system, and ultimately the khtml browser to EROS.  
 

3.1 Defensible Network Stack  
 
The networking stack effort needed to address two challenges:  
 

• The EROS software environment doesn’t look anything like other kernel software 
environments. How could we create a compatibility environment that would allow 
us to quickly adapt an existing network stack?  

 
• Because it is so large, the network stack is a significant source of systemic 

vulnerability. How could we reduce this, both by reducing the amount of trusted 
code (limiting global vulnerability) and by achieving better separation across 
applications (localizing vulnerability to a single victim).  

 
Because it is highly portable and has run successfully in a number of embedded 
environments, we chose to port the lwIP [4] network stack to EROS. Our strategy was to 
break the stack into separated ethernet driver and protocol portions, establish suspicious 
interfaces between these components, and polyinstantiate the protocol stack to provide 
isolation between applications.  
 
To achieve separation of concerns, we chose to implement our own low-level network 
driver. This allowed us to establish a multi-level defensible network stack (Figure 2). In 
the long term it should be possible to build an encapsulation environment for Linux 
ethernet drivers in general, as has been done in OSKit <citer></citer>.  
 
From a research perspective, the primary innovation in this networking stack is the 
successful combination of defensible layer boundaries and high performance. An 
exploitable flaw in the ethernet driver can compromise network traffic, but cannot tie up 
other system resources. Compromise of the ethernet allows the attacker to send bad data 
packets into the TCP/IP subsystem, but does not allow the attacker to directly 
communicate with the application. The TCP/IP stack, for its part, checks incoming 
packets to validate that they are well-formed. Due to operating-system enforced interface 
boundaries, the ethernet driver is unable to make arbitrary calls into the network stack 
code. This means that a successful upwards attack must contrive to get the TCP/IP stack 
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to compromise itself by mis-processing well-formed input. Finally, each connection has a 
private TCP/IP stack. An exploitable flaw in one TCP/IP stack does not impact other 
applications.   
 
 

 
 

Figure 2: Network stack with ethernet driver, protocol stack, and application in 
separated protection domains. 

 
Surprisingly, this division does not substantially alter network performance. 
 

3.2 Secure Window System  
 
The window system presented more fundamental challenges than the network stack. 
Current window systems fail to enforce security in two regards:  
 

• They implement no effective isolation between applications. One application may 
draw in the window of another.  

 
• They provide a general-purpose communication system through cut&paste. This 

allows arbitrary applications to influence one another, and to establish long-
running bidirectional communication channels (a potential tool for Trojan horse 
exploits).  
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In order to meet the requirements of CCCP, we needed to solve these problems and go an 
additional step further: ensure that two components of a single application could be 
isolated from each other. 
 
After a significant false start, we arrived at a window system design providing a 
hierarchical session structure that guarantees isolation between applications as well as 
between an application “shell” and a specific rendering subsystem. Further, the window 
system provides an authenticated cut&paste mechanism enforcing a purely unidirectional 
channel. 
 

3.3 Application Porting  
 
This portion of the effort was designed to evaluate the cost and feasibility of porting 
existing general-purpose software to a capability-based platform.  
 
The application porting team had three major sub-tasks:  
 

 
 
 

Figure 3: Structure of the capability confined browser and surrounding system. 
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• Port the GTK library, which provides a platform-neutral toolkit for many 
applications.  

• Port the Pango rendering system, used to draw styled, anti-aliased text in multiple 
fonts, faces, and styles.  

• Port the KHTML web browser to the EROS environment and adapt it to use the 
previous two libraries.  

 
The application porting effort involved no fundamental invention. Our naive expectation 
was that this would simply be a matter of porting some UNIX libraries to run in the 
native EROS environment. This assumption was grossly mistaken, and for reasons 
discussed in the evaluation section below, our porting efforts failed.  
 

3.4 Overall Design  
 
The overall structure of the final CCCP environment is shown in Figure 3. Each circle 
indicates a separate process running in its own address space. Arrows indicate 
capabilities between processes. If process A can invoke services from process B, there is 
an arrow from A to B.  
 
A capability grants the right to request services. It does not provide the holder with any 
ability to tamper with, alter, or examine the state of the service provider. The processes 
shown divide approximately into four groups:  
 

• Processes that are part of the system services layer (green background). These 
processes are part of the systemwide trusted computing base, and share in the 
responsibility for isolation. For example, the Trusted Window System implements 
isolated sessions.  

 
• Processes that implement mandatory policy (yellow). These processes are 

responsible for implementing administrator-defined policy, such as administrative 
restrictions on what sites may be contacted.  

 
• Processes that implement per-user policy (pink). These processes serve as the 

agents of the user, and are responsible for guarding the user’s interests and 
information by imposing interaction restrictions on behalf of the user.  

 
• Non-sensitive processes (uncolored). These processes are non-sensitive either 

because they do not provide an opportunity for compromise (the TCP/IP stack) or 
because they are entirely untrusted and presumed hostile.  

 
The key requirement of the FRT is the ability to impose application-specific mandtory 
policy on the subject application. One of the unfortunate legacies of the Orange Book 
(TCSEC) [3] is a fundamental confusion about the roles of mandatory and discretionary 
policy. Before explaining the confusion, let us state the definitions:  
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• Discretionary Policy is policy that is imposed by a program.  
 

• Mandatory Policy is policy that is imposed on a program.  
 
The confusion of the Orange Book and Common Criteria [9] standards is to assume that 
mandatory policy can only be imposed by the operating system. In fact, the distinction 
between mandatory and discretionary policy is purely a difference of point of view. If 
you are a process doing the enforcing, the policy you enforce is discretionary. If you are a 
process getting enforced, the policy is mandatory. The essential point about a mandatory 
policy is that it cannot be circumvented by the restricted process. While implementing a 
mandatory policy in the operating system certainly can ensure this, other arrangements 
can also do so.  
 
For example, suppose we wish to impose the mandatory policy that no web page should 
be able to communicate outward to its server. This policy is actually quite hard to 
implement. We tend to think of HTTP (the protocol that serves web pages) as an 
application-level protocol, but several published results have shown that the HTTP 
protocol is powerful enough to use as a transport protocol — you can build a stream 
protocol on top of HTTP, and you can transmit arbitrary information over that stream.  
 
It is tempting to imagine that a stateful firewall could be used to check that the HTTP 
protocol is not being abused, but this does not work. Using HTTP as a low-level transport 
protocol does not require misuse of the protocol! In fact, the first version of TCP on top 
of HTTP was implemented specifically to circumvent corporate firewalls in support of an 
entirely legitemate conferencing application.  
 
In CCCP, the solution we chose was to interpose an HTTP Stream Mediator between the 
web page renderer and the network. The renderer never receives direct access to the 
TCP/IP layer at all. The HTTP stream mediator is responsible for establishing the HTTP 
connection and reading the content from the server. Internally, it makes the resulting 
bytes available to the web page renderer. This gives us an implementation of the policy, 
but why is it mandatory?  
 
In order to be mandatory, we must ensure that this policy cannot be circumvented.  This 
is accomplished by a series of steps:  
 

1. When opening a page, the first thing that happens is that the visual shell creates a 
new HTTP stream mediator for the requested URL. The web page renderer never 
has access to the network or ability to create a new network connection.  

 
2. The renderer holds a capability to the HTTP stream mediator. In theory, the 

stream mediator has the ability to send arbitrary data to the server, but it will not 
do so. Furthermore, the capability held by the web page renderer does not provide 
any write operation.  
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3. The visual shell holds a capability to the application connection manager that 
identifies it as the visual shell. The application connection manager will only open 
HTTP connections when requested to do so by the visual shell.  

 
4. The application connection manager in turn holds the only capability to the 

network connection manager, which in turn holds the only capability to the 
ethernet. Ultimately, this means that the network connection manager is the only 
way one can establish an ethernet connection.  
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Figure 4: TTCP throughput measurements. 
 

5. The network connection manager, when asked for a connection, will only respond 
by providing either (a) a failure result, or (b) a capability to a freshly instantiated 
TCP/IP stack.  

 
6. Because each TCP/IP stack is a private stack, there is no possibility of cross-talk 

between two TCP/IP connections.  
 
If the only application of interest is a web browser, this structure of reliance is 
excessively complicated. However, as other applications are added to the required set, 
this structure places enforcement responsibility at the most natural choke point for each 
individual requirement.  
 
Note that even if the system provides a compiler, the user cannot construct an alternative 
browser that would compromise this chain of controls. While an alternative visual shell 
— let’s call it alternate shell — could be constructed, the user does not have and 
therefore cannot give it the necessary capability that would cause the application 
connection manager to agree to open an HTTP connection for the alternate shell.  
 
We used a combination of this sort of mediator pattern and isolation implemented by the 
trusted computing base to guard against the presumptively hostile web content and 
renderer.  
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4 Evaluation  
 
This section discusses the results obtained in the CCCP effort.  
 

4.1 Network Stack  
 
The network stack implementation achieved all of our objectives. TCP throughput is 
shown in Figure 4. While latency is very slightly higher (Figure 5) than the Linux 
network stack, throughput is directly comparable to Linux.  
 
Details of this result are given in [12], but the essential result for CCCP is that we were 
able to provide a high-performance, low-latency network stack split across several 
independently defensible protection domains without  
 

 
Figure 5: Ping latency compared to Linux. 

 
any substantial loss of network throughput. This suggests that the arguments against 
layered multiplexing made by Tennenhouse [17] were somewhat misframed. The issue is 
not layering per se, but the additional data copy costs that are commonly incurred in 
layered designs. Because the EROS network subsystem is able to use an efficient shared-
memory interface across mutual suspicion boundaries, it is not necessary for the 
implementation to explicitly copy packets across protection boundaries. The result is that 
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we achieve performance comparable to that of the IoLite design [11] while preserving 
separate protection domains.  
 
A second key innovation in this network stack lies in the accountability for resources. A 
common problem in general-purpose network stacks is that memory and CPU resources 
are not properly accounted to their associated application [1]. In the EROS network stack, 
both CPU and memory resources associated with a particular TCP connection are 
provided by the client application. No action by a client will cause the network subsystem 
to consume memory that is accounted to another application.  
 
The combined effect of this is to make successful attacks through the network stack 
substantially more difficult than in conventional systems. In addition, the utility of 
successful penetration is reduced to a single application, and cannot by promulgated into 
complete control of the target system.  
 

4.2 Window System  
 
The two key challenges of the window system effort were to substantially reduce overall 
code complexity and imple ment inter-application isolation. Detailed discussion of the 
design and its results may be found in [16].  
 
The trusted window system reduces complexity by moving all responsibility for 
rendering into the client. The window system and the client share a memory buffer that is 
allocated using per-client resource. This provides the client with a double-buffered 
display system. By having the window system copy bits from the client buffer to the 
frame buffer at will, update-related covert channels are eliminated, and the total code size 
of the window system is reduced to approximately 5,000 lines. Figure 6 shows our 
earliest test application using the double-buffered secure display system. The artist is the 
son of one of our project members.  
 
Isolation is achieved through the implementation of a session abstraction in the window 
system. An application can only modify windows associated with that application’s 
sessions. Session and window capabilities are implemented by the window system to 
enforce this restriction. We also invented a secure cut & paste design by exploiting 
confinement to achieve a purely unidirectional cut & paste operation without giving up 
the flexibility of content style and format negotiation.  
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Figure 6: Work of a proto-Picaso using ErosPaint under the secure window system. 
 
 
The session isolation mechanism allows the visual shell to implement a “container” 
around the web browser that the web browser cannot modify. The container displays 
menus and the active URL. The browser itself (that is, the portion that draws the page) 
runs in a subordinate session.  
 
The primary metric of success for the window system is size and functionality. The 
prototype visualizers shown in Figure 7 demonstrate that rich rendering is possible within 
the prototype design, including all of the elements required for a full-service browser. 
Each of these visualizers is implemented as a confined subsystem using capability-based 
confinement.  
 

4.3 Application Porting  
 
Our attempts to port large-scale application software from the Linux environment largely 
failed. In hindsight, the reasons for this are painfully obvious:  
 

1. Modern interactive application toolkits are multithreaded and tend to rely 
internally on the non-blocking notification primitives of the underlying operating 
system. EROS was specifically designed to discourage this type of usage pattern, 
and does not support it well.  

 
2. While the libraries and applications themselves would have ported easily, the 

build-time configuration tools for these applications have become entirely POSIX 
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dependent. Nearly every open source application in the world relies on the GNU 
autoconf utility, which in turn relies on having a rich, compliant POSIX 
environment.  

 
Taken together, these impediments prevented us from performing any substantial port 
within the timeframe of the project. The application team put in overwhelming effort 
trying to hand-configure these subsystems without success. Fortunately, both issues are 
conceptually easy to solve.  
 

 
 

Figure 7: Various prototype visualizers under the secure window system. 
Foreground picture shows the CCCP contributors. 

 
The first issue is EROS-specific, and relates to the design of the EROS interprocess 
communication system. EROS provides no mechanism for non-blocking communication. 
One has been added in the specification of the EROS successor. Similarly, EROS does 
not provide any straightforward mechanism for polling or multithreading. We have 
revised the successor design to address this.  
 
With the introduction of these new features in the EROS successor, it will be 
straightforward to bring up a POSIX-compatible environment. At that point we will be 
able to directly support application-level multithreading and also to run autoconf -based 
configuration scripts.  
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5 Discussion  
 
While the CCCP results show that capability-based protection is feasible and efficient, a 
key question that needs to be answered is: Is it necessary? That is, is there anything in the 
work we have done that was fundamentally enabled by capabilities and confinement and 
could not have been done as easily in a more conventional system design? Now that we 
know how to do this, could we perhaps simulate these results using the Linux Security 
Module feature set or similar controls?  
 
The technical work done here exploits capability-based protection and confinement in 
three ways:  
 

1. To narrowly restrict the set of operations (system calls and communication paths) 
accessible to each component.  

 
2. To provide each component with tamper-resistance that prevents bypassing the 

policy implemented by that component.  
 

3. To facilitate certain “suspiciously shared memory” designs that are critical to high 
performance across asymmetric trust boundaries.  

 
Restricting Operations Restrictions on operations can be imposed in any operating 
system by using system call filtering. In principle, it is possible to build a policy module 
that narrows the operations accessible to each process in the way described here. In 
practice, the complexity of the engineering required is considerable, and highly prone to 
mistakes of omission.  
 
The critical problem with filtering-based solutions is that they tend to be “fail open” 
rather than “fail closed.” As new features are introduced into the underlying system, new 
paths of communication are introduced as well. There is a lag before application-specific 
filters are updated, and during this lag there exist exploitable vulnerabilities. This is 
essentially the same lag that we currently experience with antivirus and intrusion 
detection systems. The filtering approach is fundamentally reactive rather than proactive.  
 
Capability designs, in contrast, tend to be “fail closed.” Adding new features to the 
system does not alter the capabilities held by a given application, and does not increase 
its authority. As a result, the application tends to remain as safely restricted as it was 
before the feature introduction. One possible exception to this is the addition of new 
features to some object that is part of the existing application structure. In contrast to 
general system features, object-specific features are introduced in a locally defined 
requirements context, and are usually introduced without expanding the existing security 
vulnerabilities of the object being revised. Because of this “locality of modification 
effect” property, capability-based protection offers a kind of robustness under 
engineering, maintenance and evolution that we do not understand how to achieve in non-
capability designs.  
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Tamper Resistance A key element in the defensive structure that we have created is the 
ability to construct services that can be invoked (called) without being examined or 
modified. For example, the HTTP stream mediator is an ordinary application. Its utility 
lies in the fact that it is always present (therefore always mediating) and cannot be 
bypassed.  
 
In a non-capability operating system, this simple set of constraints is surprisingly difficult 
to achieve. If the browser runs on behalf of some user fred , and a mediating process also 
runs on behalf of a user fred , then the browser is in a position to modify the state of the 
mediating process by virtue of running within the same access control domain (i.e. the 
same user). In addition, the (human) user of the system is in a position to modify the 
mediating programs. Because of this, mediating applications are hard to construct and 
defend in non-capability systems. The customary solution is to make such mediating 
applications privileged, which leads to other problems such as the “Confused Deputy” 
scenario [8].  
 
In the CCCP arrangement, these applications are trustworthy because neither the user nor 
the application can bypass them, but they are not in any way privileged.  
 
Asymmetric Trust The essential enabler to performance in the defensible network stack 
and the trusted window system is the ability to establish high-performance shared 
memory regions between processes that do not fully trust each other. The tricky problem 
in doing this comes from the combination of three requirements that are generic to all 
robust and secure systems:  
 

1. Resources should be accounted to the application that they serve.  
 

2. He who pays for storage that is allocated must be able to deallocate it.  
 

3. Shared, trusted subsystems must never be stopped or caused to fail by non-trusted 
subsystems.  

 
The first requirement means that buffer space in the network stack and the window 
system should be allocated from a client-supplied resource pool. The second implies that 
the client should be able to reclaim (destroy) that storage on demand (thereby revoking 
access). The third implies that the client cannot be given control over fault-handling 
policy for the shared storage (which has a variety of structuring implications, none 
pleasant). In summary, there is a need to maintain trusted control flow in a condition of 
untrusted allocation.  
 
We are not aware of any operating system other than EROS that can currently address 
these sumultaneous requirements, and it would not be a simple change to the POSIX 
environment to fix this issue. It is also an issue in every other microkernel we know 
about, because the same issue appears in disguise in any synchronous interprocess 
communication primitive that cannot separate these concerns. [15].  
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Each of these insights was strongly reinforced by our engineering experiences in the 
current project. Base on this, our conclusion is that capabilities and confinement provide 
unique support for asymmetric trust.  
 

6 Conclusion  
 
The CCCP outcome is a success. We have demonstrated a browser prototype that is able 
to successfully restrict hostile content using capability-based protection and confinement. 
More broadly, we have demonstrated that two key system components — the window 
system and the networking stack — can be reformulated to leverage capabilities and 
confinement to enforce isolation and provide defense in depth.  
 
In the larger sense, the success of CCCP is more qualified. We were unable to quickly 
port conventional application software efficiently because of impedance matching 
problems between the EROS operating environment and the UNIX operating 
environment. In spite of this failure, we have established three useful outcomes in the 
effort:  
 

• We have identified the impediments to low-cost porting success, and generated 
concrete designs for how to resolve them in the EROS successor.  

 
• Based on previous work performed by Key Logic, Inc. [2], we know that a 

POSIX compatibility environment can be brought up with a bounded amount of 
effort and reasonable performance. It is now an engineering problem.  

 
• We were able to confirm that a modest, relatively non-invasive “cocoon” wrapped 

around a complex and actively hostile application is sufficient to render it largely 
harmless, and that the emplacement of these cocoons can be entirely automated 
by a correctly designed user environment.  

 
From the perspective of the EROS effort, CCCP also identified some aspects of the 
EROS system that needed to be eliminated — in particular support for transparent 
persistence. As our experience porting existing applications grew, we came to recognize 
that persistence was simply getting in the way, and would actually complicate matters at 
application level. Removing persistence would significantly simplify the EROS kernel. 
Between this and the interprocess communication changes that were identified during 
CCCP, we have stopped work on the EROS system in favor of its successor: Coyotos 
(http://www.coyotos.org). It appears likely that will be able to formally verify the 
Coyotos implementation.  
 
In summary, further work is needed before it will be possible to do rapid deployment of 
general-purpose applications on a capability-based operating system. The results of 
CCCP show that capability-and confinement-based defenses are possible and efficient. 
Further engineering investment is required to turn this work into a directly deployable 
alternative to current commodity designs.  



 23

 

References  
 
[1] G. Banga, P. Druschel, and J. Mogul. “Resource Containers: A New Facility for 
Resource Management in Server Systems.” Operating Systems Design and 
Implementation, pp. 45–58, 1999.  
 
[2] A. C. Bomberger, A. P. Frantz, W. S. Frantz, A. C. Hardy, N. Hardy, C. R. Landau, 
and J. S. Shapiro. “The KeyKOS NanoKernel Architecture.” Proc. USENIX Workshop 
on Micro-Kernels and Other Kernel Architectures, pp. 95–112, Apr 1992.  
 
[3] U.S. Department of Defense, U.S. Department of Defense Trusted Computer System 
Evaluation Criteria, Document Number DoD 5200.28-STD, 1985.  
 
[4] A. Dunkels. lwIP -a lightweight TCP/IP stack. Oct 2002. 
<tt>http://www.sics.se/˜adam/lwip/</tt>  
 
[5] J. Epstein and M. Shugerman. “A Trusted X Window System Server for Trusted 
Mach.” Proceedings of the USENIX Mach Conference, Oct. 1990.  
 
[6] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin and O. Shivers, “The Flux OSKit: A 
Substrate for Kernel and Language Research”, Proc. 16th ACM Symposium on 
Operating Systems Principles, pp 38–51, Oct. 1997  
 
[7] Hardy, N.: The KeyKOS Architecture. Operating Systems Review 4(19), Oct. 1985, 
pp. 8–25.  
 
[8] N. Hardy. “The Confused Deputy,” Operating Systems Review, 22(4), Oct. 1988.  
 
[9] —: Common Criteria for Information Technology Security, International Standards 
Organization. International Standard ISO/IS 15408, Final Committee Draft, version 2.0, 
1998  
 
[10] Lampson, B. W.: A Note on the Confinement Problem. Comm. ACM. 16(10), 1973, 
pp. 613–615.  
 
[11] V. Pai, P. Druschel, and W. Zwaenepoel. “IO-Lite: A Unified I/O Buffering and 
Caching System.” Proc. Third USENIX Symposium on Operating Systems Design and 
Implementation, pp. 22–35, Feb 1999.  
 
[12] Sinha, A., Sarat, S, Shapiro, J. S.: Network Subsystems Reloaded. Proc. 2004 
USENIX Annual Technical Conference. Dec. 2004  
 



 24

[13] Shapiro, J. S., Smith, J. M., Farber, D. J.: EROS, A Fast Capability System. Proc. 
17th ACM Symposium on Operating Systems Principles. Dec 1999, pp. 170–185. 
Kiawah Island Resort, SC, USA.  
 
[14] Shapiro, J. S., Weber, S.: Verifying the EROS Confinement Mechanism. Proc. 2000 
IEEE Symposium on Security and Privacy. May 2000. pp. 166–176. Oakland, CA, USA  
 
[15] J. S. Shapiro. “Vulnerabilities in Synchronous {IPC} Design,” Proc. 2003 IEEE 
Symposium on Security and Privacy, Oakland, CA, USA, 2003  
 
[16] Shapiro, J., Vanderburgh, J. Northup, E, Chizmadia, D: Design of the EROS Trusted 
Window System. Proc. 13th USENIX Security Symposium. 2004  
 
[17] David Tennenhouse, Layered Multiplexing Considered Harmful. 2001.  


